Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37688021

RESUMO

We propose a system for self-supported martial arts training using an IoT sensing platform and Serious Game that can also be extended for general sports training. In martial arts, it is important that the practitioner is correctly performing each technique to accurately learn and prevent injury. A common stance in all martial arts, but especially in Shaolin Kung Fu, is the horse stance or Mabu. With the pandemic, many more people adopted remote training without the presence of a professional trainer to give advice. Our developed LifeMat system, which is a novel IoT pressure-sensitive training mat, uses pressure maps and pattern recognition to accurately classify key martial arts postures, provide feedback on form, and detect when the user performs the technique incorrectly. This is presented in the form of a Serious Game we have developed named Kung Future that focuses on the Mabu stance as a case study. We tested 14 participants with three different feedback conditions and demonstrated that, on average, participants had higher performance, duration, engagement, and motivation when game feedback was active. Furthermore, user responses from the surveys suggested positive feedback for real-world and long-term use and scalability.


Assuntos
Artes Marciais , Animais , Cavalos , Aprendizagem , Motivação , Pandemias , Postura
2.
Sensors (Basel) ; 22(14)2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35891018

RESUMO

We present a solution for intelligent posture training based on accurate, real-time sitting posture monitoring using the LifeChair IoT cushion and supervised machine learning from pressure sensing and user body data. We demonstrate our system's performance in sitting posture and seated stretch recognition tasks with over 98.82% accuracy in recognizing 15 different sitting postures and 97.94% in recognizing six seated stretches. We also show that user BMI divergence significantly affects posture recognition accuracy using machine learning. We validate our method's performance in five different real-world workplace environments and discuss training strategies for the machine learning models. Finally, we propose the first smart posture data-driven stretch recommendation system in alignment with physiotherapy standards.


Assuntos
Postura , Postura Sentada , Humanos , Aprendizado de Máquina , Reconhecimento Psicológico , Sensação
3.
Sensors (Basel) ; 22(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35684605

RESUMO

The term knuckleball in sporting jargon is used to describe a ball that has been launched with minimal spin, resulting in a trajectory that is erratic and unpredictable. This phenomenon was first observed in baseball (where the term originated) and has since been observed in other sports. While knuckleball has long fascinated the scientific community, the bulk of research has primarily focused on knuckleball as it occurs in baseball. Following the changes in the design of the soccer ball after the 2006 World Cup, knuckleball and ball aerodynamics were exploited by soccer players. This research examined the properties of a knuckleball in the sport of soccer. We designed and evaluated a system that could reproduce the knuckleball effect on soccer balls based on previous theories and characteristics outlined in our literature review. Our system is comprised of the Adidas miCoach Smart Ball, a companion smart phone app for data collection, a ball-launching machine with programmable functions, and a video-based tracking system and Tracker motion analysis software. The results from the testing showed that our system was successfully able to produce knuckleball behaviour on the football in a highly consistent manner. This verified the dynamic models of knuckleball that we outline. While a small portion of the data showed some lateral deviations (zig-zag trajectory), this erratic and unpredictable trajectory was much smaller in magnitude when compared to examples seen in professional games. The sensor data from the miCoach app and trajectory data from the Tracker motion analysis software, showed that the knuckleballs were consistently reproduced in-line with theoretical dynamics.


Assuntos
Desempenho Atlético , Desempenho Psicomotor , Futebol , Beisebol , Futebol Americano
4.
Sensors (Basel) ; 22(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35458901

RESUMO

Double bounce is an unusual and potentially very hazardous phenomenon that most trampoline users may have experienced, yet few would have really understood how and why it occurs. This paper provides an in-depth investigation into the double bounce. Firstly, the static and dynamic characteristics of a recreational trampoline are analysed theoretically and verified through experiments. Then, based on the developed trampoline dynamic model, double bounce simulation is conducted with two medicine balls released with different time delays. Through simulation, the process of double bounce is presented in detail, which comprehensively reveals how energy is transferred between users during double bounce. Furthermore, the effect of release time delay on double bounce is also presented. Finally, we conducted an experiment which produced similar results to the simulation and validated the reliability of the trampoline dynamic model and double bounce theoretical analysis.


Assuntos
Vibração , Simulação por Computador , Reprodutibilidade dos Testes
5.
Sensors (Basel) ; 21(21)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34770643

RESUMO

This study illustrates the application of a tri-axial accelerometer and gyroscope sensor device on a trampolinist performing the walking-the-wall manoeuvre on a high-performance trampoline to determine the performer dynamic conditions. This research found that rigid vertical walls would allow the trampolinist to obtain greater control and retain spatial awareness at greater levels than what is achievable on non-rigid vertical walls. With a non-rigid padded wall, the reaction force from the wall can be considered a variable force that is not constrained, and would not always provide the feedback that the trampolinist needs to maintain the balance with each climb up the wall and fall from height. This research postulates that unattenuated vertical walls are safer than attenuated vertical walls for walking-the-wall manoeuvres within trampoline park facilities. This is because non-rigid walls would provide higher g-force reaction feedback from the wall, which would reduce the trampolinist's control and stability. This was verified by measuring g-force on a horizontal rigid surface versus a non-rigid surface, where the g-force feedback was 27% higher for the non-rigid surface. Control and stability are both critical while performing the complex walking-the-wall manoeuvre. The trampolinist experienced a very high peak g-force, with a maximum g-force of approximately 11.5 g at the bottom of the jump cycle. It was concluded that applying impact attenuation padding to vertical walls used for walking-the-wall and similar activities would increase the likelihood of injury; therefore, padding of these vertical surfaces is not recommended.


Assuntos
Acelerometria , Caminhada
6.
Animals (Basel) ; 11(9)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34573653

RESUMO

The University of Technology Sydney (UTS) has been working closely with the Australasian greyhound industry for more than 5 years to reduce greyhound race-related injuries. During this period, UTS has developed and deployed several different techniques including inertial measurement units, drones, high-frame-rate cameras, track geometric surveys, paw print analysis, track soil spring-force analysis, track maintenance data, race injury data, race computer simulation and modelling to assist in this task. During the period where the UTS recommendations have been adopted, the injury rate has dropped significantly. This has been achieved by animal welfare interventions that lower racing congestion, and lower transient forces and jerk rates the greyhounds experience during a race. This study investigated the use of a greyhound location tracing system where small and lightweight signal emitting devices were placed inside a pocket in the jackets of racing greyhounds. The system deployed an enhanced version of a player tracking system currently used to track the motion of human athletes. Greyhounds gallop at speeds of almost 20 m/s and are known to change their heading direction to exceed a yaw rate of 0.4 rad/s. The high magnitudes of velocity, acceleration and jerk posed significant technical challenges, as the greyhounds pushed the human tracking system beyond its original design limits. Clean race data gathered over a six-month period were analysed and presented for a typical 2-turn greyhound racing track. The data confirmed that on average, greyhounds ran along a path that resulted in the least energy wastage, which includes smooth non-linear paths that resemble easement curves at the transition between the straights to the semi-circular bends. This study also verified that the maximum jerk levels greyhounds experienced while racing were lower than the jerk levels that had been predicted with simulations and modelling for the track path. Furthermore, the results from this study show the possibility of such a systems deployment in data gathering in similar settings to greyhound racing such as thoroughbred and harness horse racing for understanding biomechanical kinematic performance.

7.
Sensors (Basel) ; 21(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802201

RESUMO

Martial arts has many benefits not only in self-defence, but also in improving physical fitness and mental well-being. In our research we focused on analyzing the velocity, impulse, momentum and impact force of the Taekwondo sine-wave punch and reverse-step punch. We evaluated these techniques in comparison with the martial arts styles of Hapkido and Shaolin Wushu and investigated the kinematic properties. We developed a sensing system which is composed of an ICSensor Model 3140 accelerometer attached to a punching bag for measuring dynamic acceleration, Kinovea motion analysis software and 2 GoPro Hero 3 cameras, one focused on the practitioner's motion and the other focused on the punching bag's motion. Our results verified that the motion vectors associated with a Taekwondo practitioner performing a sine-wave punch, uses a unique gravitational potential energy to optimise the impact force of the punch. We demonstrated that the sine-wave punch on average produced an impact force of 6884 N which was higher than the reverse-step punch that produced an average impact force of 5055 N. Our comparison experiment showed that the Taekwondo sine-wave punch produced the highest impact force compared to a Hapkido right cross punch and a Shaolin Wushu right cross, however the Wushu right cross had the highest force to weight ratio at 82:1. The experiments were conducted with high ranking black belt practitioners in Taekwondo, Hapkido and Shaolin Wushu.

8.
Sensors (Basel) ; 18(7)2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30011833

RESUMO

The LifeChair is a smart cushion that provides vibrotactile feedback by actively sensing and classifying sitting postures to encourage upright posture and reduce slouching. The key component of the LifeChair is our novel conductive fabric pressure sensing array. Fabric sensors have been explored in the past, but a full sensing solution for embedded real world use has not been proposed. We have designed our system with commercial use in mind, and as a result, it has a high focus on manufacturability, cost-effectiveness and adaptiveness. We demonstrate the performance of our fabric sensing system by installing it into the LifeChair and comparing its posture detection accuracy with our previous study that implemented a conventional flexible printed PCB-sensing system. In this study, it is shown that the LifeChair can detect all 11 postures across 20 participants with an improved average accuracy of 98.1%, and it demonstrates significantly lower variance when interfacing with different users. We also conduct a performance study with 10 participants to evaluate the effectiveness of the LifeChair device in improving upright posture and reducing slouching. Our performance study demonstrates that the LifeChair is effective in encouraging users to sit upright with an increase of 68.1% in time spent seated upright when vibrotactile feedback is activated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...